Although kinase-targeted drugs have achieved significant clinical success, they are frequently subject to the limitations of drug resistance, which has become a primary vulnerability to targeted drug therapy. Therefore, deciphering resistance mechanisms is an important step in designing more efficacious, anti-resistant, drugs. Here we studied two FDA-approved kinase drugs: Crizotinib and Ceritinib, which are first- and second-generation anaplastic lymphoma kinase (ALK) targeted inhibitors, to unravel drug-resistance mechanisms. We used an on-the-fly, function-site interaction fingerprint (on-the-fly Fs-IFP) approach by combining binding free energy surface calculations with the Fs-IFPs. Establishing the potentials of mean force and monitoring the atomic-scale protein-ligand interactions, before and after the L1196M-induced drug resistance, revealed insights into drug-resistance/anti-resistant mechanisms. Crizotinib prefers to bind the wild type ALK kinase domain, whereas Ceritinib bind..... READ ARTICLE
Journal of Chemical Theory and Computation DOI:10.1021/acs.jctc.9b01134
Authors: Zheng Zhao, Philip E. Bourne