Posts tagged alectinib resistance
Efficacy and Resistance of ALK Inhibitors in Two Inflammatory Myofibroblastic Tumor Patients with ALK Fusions Assessed by Whole Exome and RNA Sequencing

We report two inflammatory myofibroblastic tumor (IMT) patients with ALK fusions (RRBP-ALK and TNS1-ALK, respectively). They both received tumor resection surgery and treatment with ALK inhibitors crizotinib followed by alectinib, and upon receiving each of the drugs, showed a brief response, then experienced recurrence or progression of the disease. During the treatment, whole exome sequencing (WES) and RNA sequencing (RNA-Seq) were applied to monitor potential drug-induced gene mutation and expression changes. A novel, secondary mutation in ALK exon 23 (L1196Q) was identified in patient 1 after alectinib resistance developed. Guided by this result, a newer ALK inhibitor, ceritinib was prescribed. The patient was able to achieve a partial response (PR) and is in good condition as of the manuscript date. On the contrary, there was no secondary mutation identified in ALK in patient 2 after drug resistance. While the expression of PTCH1, a negative regulator of the sonic hedgehog (SHH) signaling pathway, was significantly reduced at the time after the treatment with crizotinib before that of alectinib. The expression of PTCH1 was also reduced after the treatment with alectinib. It was reported that ALK can exert its biological functions partially by activating SHH signaling pathway. The down-regulation of PTCH1 suggests the compensatory activation of SHH pathway may cause resistance to ALK inhibitors in IMT. Going forward, monitoring gene mutation and expression changes through DNA and RNA sequencing will be able to offer opportunities to investigate potential mechanisms of drug resistance and will help to achieve precise prescription for better treatment outcomes. READ ARTICLE

OncoTargets and Therapy DOI: 10.2147/OTT.S270481

Authors: Chenlu Zhang, Zhiming Wang, Rongyuan Zhuang, Xi Guo, Yi Feng, Feng Shen, Wenshuai Liu, Yong Zhang, Hanxing Tong, Wending Sun, Jun Liu, Guan Wang, Chun Dai, Weiqi Lu and Yuhong Zhou

Read More
Osimertinib Overcomes Alectinib Resistance Caused by Amphiregulin in a Leptomeningeal Carcinomatosis Model of EML4-ALK Lung Cancer

Background: Central nervous system (CNS) metastasis, such as brain metastasis and leptomeningeal carcinomatosis (LMC), occurs in 20–40% of all patients with cancer. Anaplastic lymphoma kinase (ALK) is a clinically validated drug target and ALK rearrangements are found in approximately 3-5% of non-small cell lung cancer (NSCLC). ALK tyrosine kinase inhibitor (TKI) shows dramatic clinical efficacy in ALK-rearranged NSCLC patients, and the second-generation ALK-TKI alectinib is effective against CNS metastasis of ALK-rearranged NSCLC. However, the patients with ALK-rearrangement acquire resistance to alectinib over time and develop recurrent LMC metastasis. This study aimed to clarify the mechanism of resistance to alectinib in LMC and seek a novel therapeutic strategy. Conclusion: We demonstrated that EML4-ALK lung cancer cells acquired moderate resistance to alectinib in the leptomeningeal space due to amphiregulin-triggered EGFR activation. Moreover, combined use of alectinib and EGFR..... READ ARTICLE

Journal of Thoracic Oncology DOI:10.1016/j.jtho.2019.08.1841

Authors: S. Arai, S. Takeuchi, K. Fukuda, A. Nishiyama, A. Tanimoto, H. Taniguchi, M. Satouchi, S. Nanjo, R. Katayama, M. Nishio, M. Zheng, Y. Wu, S. Yano

Read More