While significant advancements have been made in the available therapies for metastatic non-small cell lung cancer (NSCLC), acquired resistance remains a major barrier to treatment. We have not yet achieved the ability to cure advanced NSCLC with systemic therapy, despite our growing understanding of many of the oncogenic drivers of this disease. Rather, the emergence of drug-tolerant and drug-resistant cells remains the rule, even in the face of increasingly potent targeted therapies. In this review, we provide a broad overview of the mechanisms of resistance to targeted therapy that have been demonstrated across molecular subtypes of NSCLC, highlighting the dynamic interplay between driver oncogene, bypass signaling pathways, shifting cellular phenotypes, and surrounding tumor microenvironment. READ ARTICLE
Pharmacology & Therapeutics DOI:10.1016/j.pharmthera.2020.107522
Authors: Catherine B. Meador, Aaron N. Hata
Rapidly developing molecular biology techniques have been employed to identify cancer driver genes in specimens from patients with non-small cell lung cancer (NSCLC). Inhibitors and antibodies that specifically target driver gene-mediated signaling pathways to suppress tumor growth and progression are expected to extend the survival time and further improve the quality of life of patients. However, the health of patients with advanced and metastatic NSCLC presents significant challenges due to treatment resistance, mediated by cancer driver gene alteration, epigenetic alteration, and tumor heterogeneity. In this review, we discuss two different resistance mechanisms in NSCLC targeted therapies, namely changes in the targeted oncogenes (on-target resistance) and changes in other related signaling pathways (off-target resistance) in tumor cells. We highlight the conventional mechanisms of drug resistance elicited by the complex heterogeneous microenvironment of NSCLC during targeted ther..... READ ARTICLE
Pharmacology & Therapeutics DOI:10.1016/j.pharmthera.2019.107438
Authors: Wen-juan Liu, Yue Du, Ru Wen, Ming Yang, JianXu