Posts tagged Cancer therapeutic resistance
Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management

The discoveries of EGFR mutations and ALK rearrangements as actionable oncogenic drivers in non-small-cell lung cancer (NSCLC) has propelled a biomarker-directed treatment paradigm for patients with advanced-stage disease. Numerous EGFR and ALK tyrosine kinase inhibitors (TKIs) with demonstrated efficacy in patients with EGFR-mutant and ALK-rearranged NSCLCs have been developed, culminating in the availability of the highly effective third-generation TKIs osimertinib and lorlatinib, respectively. Despite their marked efficacy, resistance to these agents remains an unsolved fundamental challenge. Both ‘on-target’ mechanisms (largely mediated by acquired resistance mutations in the kinase domains of EGFR or ALK) and ‘off-target’ mechanisms of resistance (mediated by non-target kinase alterations such as bypass signalling activation or phenotypic transformation) have been identified in patients with disease progression on osimertinib or lorlatinib. A growing understanding of the biology and spectrum of these mechanisms of resistance has already begun to inform the development of more effective therapeutic strategies. In this Review, we discuss the development of third-generation EGFR and ALK inhibitors, predominant mechanisms of resistance, and approaches to tackling resistance in the clinic, ranging from novel fourth-generation TKIs to combination regimens and other investigational therapies. READ ARTICLE

Nat Rev Clin Oncol DOI:10.1038/s41571-022-00639-9

Authors: Cooper, A.J., Sequist, L.V. & Lin, J.J.

Read More
GSK3 inhibition circumvents and overcomes acquired lorlatinib resistance in ALK-rearranged non-small-cell lung cancer

Anaplastic lymphoma kinase (ALK) fusion is found in ~3%–5% of patients with non-small-cell lung cancers (NSCLCs). Although the third-generation ALK tyrosine kinase inhibitor (TKI) lorlatinib shows high clinical efficacy in ALK-positive NSCLC, most of the patients eventually relapse with acquired resistance. Recently, drug-tolerant persister (DTP) cells have been considered an important seed of acquired resistance cells. In this study, we established lorlatinib intermediate resistant cells from a patient-derived cell model. Glycogen synthase kinase 3 (GSK3) inhibitions significantly suppressed lorlatinib intermediate resistant cell growth. GSK3 inhibition also sensitized acquired resistance cells derived from alectinib-treated patients with or without secondary mutations to lorlatinib. Therefore, GSK3 plays a crucial role in developing acquired resistance against lorlatinib in ALK-positive NSCLC mediated by lorlatinib intermediate resistant cells and could be a potential molecular target to prevent acquired lorlatinib resistance and overcome ALK-TKI resistance. READ ARTICLE

Precision Oncology DOI:10.1038/s41698-022-00260-0

Authors: JYuki Shimizu, Jun Adachi, Yuichi Abe, Ryohei Narumi, Ken Uchibori, Noriko Yanagitani, Sumie Koike, Satoshi Takagi, Makoto Nishio, Naoya Fujita and Ryohei Katayama

Read More
YAP1 mediates survival of ALK-rearranged lung cancer cells treated with alectinib via pro-apoptotic protein regulation

Despite the promising clinical efficacy of the second-generation anaplastic lymphoma kinase (ALK) inhibitor alectinib in patients with ALK-rearranged lung cancer, some tumor cells survive and eventually relapse, which may be an obstacle to achieving a cure. Limited information is currently available on the mechanisms underlying the initial survival of tumor cells against alectinib. Using patient-derived cell line models, we herein demonstrate that cancer cells survive a treatment with alectinib by activating Yes-associated protein 1 (YAP1), which mediates the expression of the anti-apoptosis factors Mcl-1 and Bcl-xL, and combinatorial inhibition against both YAP1 and ALK provides a longer tumor remission in ALK-rearranged xenografts when compared with alectinib monotherapy. These results suggest that the inhibition of YAP1 is a candidate for combinatorial therapy with ALK inhibitors to achieve complete remission in patients with ALK-rearranged lung cancer. READ ARTICLE

Nature Communications DOI:10.1038/s41467-019-13771-5

Authors: Takahiro Tsuji, Hiroaki Ozasa, Wataru Aoki, Shunsuke Aburaya, Tomoko Yamamoto Funazo, Koh Furugaki, Yasushi Yoshimura, Masatoshi Yamazoe, Hitomi Ajimizu, Yuto Yasuda, Takashi Nomizo, Hironori Yoshida, Yuichi Sakamori, Hiroaki Wake, Mitsuyoshi Ueda, Young Hak Kim & Toyohiro Hirai

Read More