Introduction: Precision therapy for cancer drug resistance requires detection of resistance mutations and treatment with appropriate targeted therapies. This paradigm is well established in EGFR-mutant NSCLC, yet our understanding of drug resistance in ALK-positive NSCLC is limited. Next-generation sequencing (NGS) of plasma cell-free DNA (cfDNA) now permits noninvasive interrogation of drug resistance. To facilitate improved understanding of ALK drug resistance and the effectiveness of treatment strategies, we launched this remote participation study. Conclusions: Plasma NGS permits the detection of targetable resistance mechanisms in patients with ALK-positive NSCLC and drug resistance. Sensitivity of different plasma NGS assays for ALK fusions varies. This assay may help guide oncologists across the country to select best treatment options after resistance. Such remote-participation studies may offer a new mechanism for characterizing resistance to emerging targeted therapies in rare cancer populations. READ ARTICLE
Clinical Cancer Research DOI:10.1158/1557-3265.LiqBiop20-A28
Authors: Marissa N. Lawrence, Rubii M. Tamen, Alicia Sable-Hunt, Seyed Ali Hosseini, George R. Simon, Jonathan W. Riess, Geoffrey R. Oxnard.